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1. Introduction

Flux compactifications (see [2] and [3] for reviews and exhaustive lists of references) have

become of central importance in string theory in recent years. The reasons for this are

manifold, ranging from a desire to make contact with experiments (in particle physics and

cosmology) to the purely theoretical interest (to understand new solutions, geometries and

topologies for their own sake). The last few years have seen the gathering of a lot of new

‘data’, yet no synthesis, analogous to the second string revolution, is in sight. In fact, it
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can be argued that the gathering of mathematical data has just begun, and that this has

inspired (and has been inspired by) quite a few breakthroughs in mathematics. Recent

years have also seen the maturing of topological string theory (see [4, 5] for reviews and

references) and the birth of the outline of a theory known as topological M-theory [6], which

promises to unify the different topological string theories in a unified framework. Such

theories, playing a side role in their infancy, have come more and more to the mainstream

discussions of string theory, with many unexpected contributions to the physical side of

string theory.

In [1], which is a seminal attempt to bridge topological- and super-string theories,

Vafa made the conjecture that mirror symmetry ought to be extendable to the scenario

that included compactification of string theory on Calabi-Yau manifolds with fluxes. This

has been verified in the low-energy limit for different cases. For example in [38] it was shown

that type IIA and type IIB theories with RR fluxes continue to be mirror symmetric if they

are compactified on a pair of mirror Calabi-Yau manifolds, M and W. Recall that the RR

field strengths are even forms in IIA and odd forms in IIB, and so the extension of mirror

symmetry with RR fluxes is consistent, although by no means trivially so, with the intuition

of mirror symmetry exchanging odd and even cohomologies in the Hodge diamonds of the

mirror pair. Since the NS field strength is a three form and is the same in both type II

theories, the results of [38] raises the obvious question of what is the mirror dual of, say,

type IIB theory on a Calabi-Yau W with just NS fluxes turned on. Vafa had suggested

that the dual of IIB on W with NS fluxes also has fluxes but now these fluxes are ‘even NS

fluxes’ that are encoded in the dilaton and the graviton (which are also in the NS sector).

In other words, Vafa suggested that the dual ought to be an almost complex manifold

whose complex structure would not be integrable. This lack of integrability would encode

the missing NS fluxes, without recourse to the usual ‘matter sector’, say, as in [38].

Vafa’s intuition was made concrete in the astonishing work [9] which showed that the

relevant geometry dual to that of Calabi-Yau W with NS fluxes, are a special class of

half-flat manifolds which we shall denote by M̃ in this paper. These manifolds are, in a

sense, deformations of the Calabi-Yau manifold M which is the canonical mirror dual of

W.1 Generic half-flat manifolds, M̃ , are a special class of SU(3) manifolds which are the

minimal ingredient for the N = 2 reduction of ten-dimensional type II string theory [24].

Half-flat manifolds had already made their appearance in the work of Hitchin [11],

and they play an important role in the construction of a special type of G2 holonomy

manifold. It is interesting to note that Hitchin’s work emphasizes the form-aspects of the

special geometries in six and seven dimensions, and thus is very close in spirit to topological

string/M theories and the related form-theories of gravity.

In this paper we were motivated by taking a closer look at the metric sector of the

half-flat manifolds M̃ proposed in [9], in particular we wanted to know if the Ricci tensor

of M̃ plays any role in the low energy effective theory. At the time of the onset of this

work there were no formulae for the Ricci curvature of half-flat manifolds available in the

literature, and we decided to derive expressions for it. Recently, as our work of the ‘physics’

1By ‘canonical mirror dual’ we mean ‘mirror dual in the absence of fluxes.’
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part was nearing completion, which is based on the mathematical results that we derived

earlier, we learned in [24] of a paper [30] in the mathematics archives which computes the

Ricci curvature of manifolds with SU(3) structure. Thus the first half of our paper will

have some overlap with [30] in content but not in technique, language or point of view.

The central results of our paper are the following: We have derived expressions,

eqs. (4.7) and (4.8), for the Ricci curvature of generic half-flat manifolds in terms of

their intrinsic torsion by thinking of them as hypersurfaces that foliate a non-compact G2

holonomy cylinder à la Hitchin [11]. We then derive the Ricci curvature, eqs. (6.12), (6.13)

and (6.14), of the particular class of half-flat manifolds M̃ that arise from mirror symme-

try [9]. We then use a consistency argument involving the Ricci curvature of M̃ in Leff to

derive a condition, eqs. (6.24) or (6.26), on the Kähler moduli space. This leads, by using

one of Hitchin’s flow equations, to a formula (6.27) for the flow of the volume of M̃.

At the risk of repeating ourselves, we now give a brief overview of the different sections

of our paper. In section two we review properties of six-dimensional manifolds with SU(3)

structure, considering in particular those of Calabi-Yau and half-flat manifolds. Intrinsic

torsion classes of the manifolds, and expression of the exterior derivatives of the fundamen-

tal two form J and three form Ω in terms of them, are discussed. In section three we show

that the intrinsic torsion of half-flat manifolds is equivalent to their extrinsic curvature

when embedded inside seven dimensional manifolds of G2 holonomy. Then in section four,

by exploiting the relationship between half-flat manifolds with SU(3) structure and non-

compact manifolds with G2 holonomy, we derive expressions for the Ricci curvature tensor

and scalar for half-flat manifolds in terms of the torsion classes. In section five we verify

our results of section four by comparing Ricci curvature computed using torsion classes to

that determined from standard affine connection expressions. We make our comparisons

for a subset of half-flat manifolds known as nilmanifolds (which are derived from nilpotent

Lie algebras and include Iwasawa manifolds as examples). Then in section six we derive

expressions for the torsion classes of the particular half-flat manifolds M̃ in the language

of the moduli spaces of the Calabi-Yau manifold M, and then derive expressions for the

Ricci curvature for M̃. We then turn our attention to a particular term in the low energy

effective action (derived in [9]) and study its variation. We derive two expressions for this

variation which from consistency arguments must be the same, and from that we derive a

condition on the Kähler moduli space of the compactification. We show that this condition

reduces to a trivial identity in the limiting case when the ‘underlying’ Calabi-Yau M has a

one dimensional Kähler moduli space. In section seven we conclude the body of our paper

with a discussion of our findings and some comments on further work that needs to be done.

Some background material for the paper is presented in the appendices. In appendix

A we present a review of differential forms and our conventions. In appendix B we review

the Kähler deformations, complex structure deformations, and the large structure limit

associated with Calabi-Yau manifolds. In appendix C we give details of the derivations of

the results presented in section 6.
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2. Manifolds with SU(3) structure: Calabi-Yau and half-flat

A six dimensional orientable manifold M is said to have SU(3) structure if it admits only

one no-where vanishing Majorana spinor η. It can be shown that the existence of such a

spinor implies that the structure group of the frame bundle of M is reduced from SO(6) to

SU(3). This globally defined spinor is the singlet in the decomposition of the 4 of SU(4)

(which is the spin cover of SO(6)) under SU(3):

4 → 3 + 1. (2.1)

Another way of defining SU(3) structure is to say that M admits a non-degenerate almost

hermitian structure Jm
n (which is not necessarily integrable) and a globally defined 3-form

Ωmnp which is of type (3, 0) with respect to Jm
n. It can be shown that such objects define

a Riemannian structure gmn on M [14].

Given the Riemannian structure gmn one can construct a (1, 1)-type 2-form, which we

denote by the same symbol J , via

Jmn = Jm
pgpn. (2.2)

The quantities Jmn and Ωmnp can be constructed from the globally defined spinor η in the

following way

Jmn = iη̄Γ7Γmnη

Ω+
mnp = −η̄Γ7Γmnpη

Ω−
mnp = iηΓmnpη

Ω = Ω+ + iΩ− (2.3)

where Γm1...mn
are the antisymmetrized products of the n gamma matrices and Γ7 is the

six-dimensional chirality operator. Our convention for the gamma matrices is that they

are all imaginary (including Γ7) and hermitian. Conjugate spinors are given by ψ̄ = ψ†,

and the Majorana condition is ψ̄ = ψT . Also we denote by Ω+ and Ω− the real and the

imaginary part of Ω, respectively. We have taken η, the globally defined eight-component

Majorana spinor on M , to be commuting.

This construction is of course local and for the manifold to have SU(3) structure the

spinor η must remain a singlet under parallel propagation around closed loops via some

connection ∇′. i.e.

∇′η = 0. (2.4)

However, this connection ∇′ may not be the torsion-free unique Levi-Civita connection,

which we denote by ∇, that is constructed from gmn. If it is, then the integrability condition

of eq. (2.4) implies that holonomy group of the Levi-Civita connection, which we denote by

H(∇), is SU(3), and the corresponding spinor η is said to be covariantly constant or just

constant. Such manifolds are Kähler with vanishing first Chern class, and the corresponding

metric is Ricci-flat. These manifolds are the Calabi-Yau manifolds.
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If on the other hand η is not constant then the holonomy group of the Levi-Civita

connection will not be SU(3). Given the Levi-Civita connection and

∇η 6= 0 (2.5)

we can always construct a connection ∇′ such that (2.4) is satisfied [7]. The difference

between these two connections is given by the contorsion κ′ or equivalently the torsion

W ′, which lies in Λ1 ⊗ Λ2 ∼= Λ1 ⊗ so(6). (We use the convention that g denotes the

Lie algebra of the Lie group G). However, when structure group is reduced to SU(3),

the difference between the two connections is encoded in the intrinsic contorsion κ or the

intrinsic torsion2 W , which is actually in Λ1 ⊗ su(3)⊥, where su(3)⊥ is defined by the

decomposition so(6) = su(3) ⊕ su(3)⊥. Thus we have from eq. (2.4)

∇η + κη = 0 (2.6)

and intrinsic torsion encodes how H(∇) deviates from SU(3).

Since Λ1 ∼= 3 ⊕ 3 and su(3)⊥ = 1 ⊕ 3 ⊕ 3̄ under SU(3), the intrinsic torsion breaks

up into various SU(3) modules, and this provides a useful scheme for the classification of

manifolds with SU(3) structure.3 It can be shown that the intrinsic torsion for M breaks

up into five SU(3) modules [8]

(1 ⊕ 1) ⊕ (8 ⊕ 8) ⊕ (6 ⊕ 6̄) ⊕ (3 ⊕ 3̄) ⊕ (3′ ⊕ 3̄′)

W1 ⊕ W2 ⊕ W3 ⊕ W4 ⊕ W5
(2.7)

where these modules are called torsion classes and denoted by Wi. Thus the class of SU(3)

manifolds known as Calabi-Yau manifolds may be characterized by Wi = 0 ∀i.

It should be clear from the foregoing discussion that in the general case of SU(3)

structure, neither J (the 2-form corresponding to Jm
n) nor Ω would be closed. dJ and

dΩ, which are in the 20 and 24 representations of SO(6), respectively, decompose, under

SU(3), in the following way [8]

dJ = −3
2(W1Ω)− + W4 ∧ J + W3

20 = (1 ⊕ 1) ⊕ (3 ⊕ 3̄) ⊕ (6⊕ 6̄)

(2.8)

and
dΩ = W1J ∧ J + W2 ∧ J + W 5 ∧ Ω

24 = (1 ⊕ 1) ⊕ (8 ⊕ 8̄) ⊕ (3′ ⊕ 3̄′).
(2.9)

As explained in the introduction, we are interested in a class of manifolds with SU(3)

structure which arise from considering mirror symmetry on compactifications of string

theories on Calabi-Yau manifolds with NS fluxes. Such manifolds are known as half-flat

2Torsion and contorsion are isomorphic and when there is no room for confusion we use the terms

interchangeably.
3From now on all representations shall be representations of SU(3) unless otherwise indicated.
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manifolds and they are characterized by4

W−
1 = W−

2 = W4 = W5 = 0 (2.10)

where by W+
i (W−

i ) we denote the real (imaginary) part of Wi. In terms of J and Ω the

requirement of half-flatness (2.10) becomes [8, 9]

J ∧ dJ = 0

dΩ− = 0. (2.11)

3. Half-flat and G2 holonomy manifolds: intrinsic torsion = extrinsic cur-

vature

In this section we demonstrate, by constructing the explicit maps, that the intrinsic torsion

of half-flat manifolds is equivalent to the extrinsic curvature of the embedding of such

manifolds inside a manifold with G2 holonomy.

Let Z be a seven-dimensional Riemannian manifold with G2 holonomy. This means

that Z comes equipped with a 3-form φ and a 4-form φ̃, both of which are globally defined,

and invariant under a G2 transformation of the tangent bundle; and that both φ and φ̃ are

closed. Then, they induce a Riemannian structure ĝMN on Z such that

φ̃ = ∗̂φ (3.1)

where the Hodge star operator ∗̂ is defined with respect to ĝMN . These conditions are

equivalent to the apparently more stringent condition

∇̂φ = 0 (3.2)

where ∇̂ is the Levi-Civita connection constructed from ĝMN . φ and φ̃ are called the

associative and co-associative G2-forms, respectively, and these labels derive from the fact

that the components of φ are the structure constants of the automorphism group of the

imaginary octonians.

Another way of saying that Z has G2 holonomy is to say that there is only one covari-

antly constant Majorana spinor η,

∇̂η = 0, (3.3)

on Z. Then this spinor can be used to define the associative and the co-associative forms

via

φMNP = iη̄ΓMNP η

φ̃MNPQ = η̄ΓMNPQη (3.4)

A seven dimensional manifold with G2 holonomy defines locally an SU(3) structure

on a six dimensional sub-manifold. As mentioned in the introduction we want to exploit

4Note that Ω is defined only up to multiplication by a phase, hence there are two natural options

for (2.10). We choose our convention to be consistent with [9] which differs from that of [8] by a factor of

−i.
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the relationship between half-flat manifolds M̃ with SU(3) structure and non-compact G2

holonomy manifolds Z. Such a G2 structure has been called ‘dynamic’ in [8] to reflect

the fact that the global embedding of SU(3) into G2 holonomy reduces to a Hamiltonian

mechanical system [11]. To make this connection between seven and six dimensions, we

dress the discussion on the intrinsic torsion of M̃ in terms of how M̃ is embedded in Z.

The class of G2 holonomy manifolds that we are interested in has the useful property

that their Ricci-flat metric can be globally written as5

dŝ2 ≡ ĝMNdyMdyN

= dz2 + gmn(z, y)dymdyn. (3.5)

Of course this does not mean that {ym} are global coordinates. Manifolds which admit

metrics of the above form, regardless of their holonomy, have been called ‘generalized

cylinders’ in [12]. gmn(z, y) denote the metric on the half-flat leaves zM̃ that foliate Z,

which is induced from the ‘dynamical’ embedding of the SU(3) structure within the G2

structure . We should adopt the notation, consistent with the last section, that z∇ denotes

the Levi-Civita connection on zM̃ for the metric gmn(z, y); however, from now on we omit

the label z on the quantities on the the half-flat manifold, unless there is a cause for

confusion. Then via the Gauß-Weingarten equation we get from eq. (3.3) the following

equation for the Levi-Civita connection of M̃

∇mη +
1

2
Km

nΓnΓzη = 0 (3.6)

where Kmn = 1/2 ∂zgmn is the second fundamental form of the embedding of M̃ in Z.

The SU(3) structure of M̃ is then given in terms of the G2 structure by

Jmn = φzmn

Ω−
mnp = φmnp

Ω+
mnp = φ̃mnpz. (3.7)

On a G2 holonomy manifold we have

d̄φ = d̄∗̂φ = 0 (3.8)

where we have used d̄ to denote the seven dimensional exterior derivative operator. De-

noting by d the exterior derivative operator on M̃ and setting

d̄ = dz
∂

∂z
+ d (3.9)

we find that (3.8) leads to the half-flat conditions (2.11) in addition to the compatibility

conditions,

dJ =
∂Ω−

∂z
(3.10)

dΩ+ = −J ∧ ∂J

∂z
, (3.11)

5Note that this is quite different from saying that this is what the metric looks like in Gaussian local

coordinates.
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which lead to the seven dimensional G2 holonomy metric above [11, 8]. Eqs. (3.10)

and (3.11) are known as Hitchin’s flow equations.

Note that on a general six dimensional manifold with SU(3) structure the intrinsic

torsion has 42 independent components which the half-flatness condition reduces by half.

Also, note that, for a general seven dimensional metric of the form (3.5) the second funda-

mental form has exactly 21 independent components. As is obvious from (3.6) then, there

is a one-to-one map between the intrinsic torsion of a half-flat manifold and the second

fundamental form of its embedding into a G2 holonomy manifold. In fact it is easy to show

that the intrinsic contorsion κ mentioned in the previous section is related to the extrinsic

curvature K via

κrst =
1

2
Km

r Ω+
mst. (3.12)

We now construct the map between the individual torsion classes and the extrinsic

curvature. This map can be found by using (3.6) to calculate the exterior derivatives (2.8)

and (2.9). The relevant expressions to start from are the derivatives of J and Ω in terms

of Kmn

∇mΩ+
pqr = Kn

m (JnpJqr − JnqJpr + JnrJpq) (3.13)

∇mΩ−
pqr = −KmrJpq + KmqJpr − KmpJqr

∇mJpq = Kn
mΩ−

npq,

and then anti-symmetrizing we get

(dJ)mpq = 3Kn
[mΩ−

|n|pq] (3.14)

(dΩ)mpqr = 12Kn
[mJ|n|pJqr]. (3.15)

Using these expressions it is easy to show that the intrinsic contorsion (3.12) is equivalent

to

κrst = −1

2
(∇rJs

q) Jqt. (3.16)

This is the contorsion used in analyzing the geometry of almost hermitian manifolds in [7]

and was introduced in [13].

To obtain the torsion classes from eqs. (3.14), (3.15), we proceed in the following

fashion (see [8] for more details). By contracting Ω or J ∧ J with dJ or dΩ, respectively,

one derives W1. To obtain then W5, one contracts Ω with dΩ. Subtracting these two

from dΩ one obtains W2. The primitive (2,1) part of dJ gives W3 and its orthogonal (2,1)

complement gives W4. This way we find

W+
1 =

1

3
K

(W+
2 )mn = −1

3
KJmn + Kr

mJrn − Kr
nJrm

(W3)mnp = −3i

2
Π−

[m
rKq

|r|
Ωnp]q (3.17)

as well as W−
1 = W−

2 = W4 = W5 = 0. Note that W+
2 is a primitive (1,1)-form and

W3 is a primitive (2,1)-form. In the above equations K denotes the trace of the second

– 8 –
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fundamental form. Also we have the usual projection operators

Π±
m

n =
1

2
(δn

m ∓ iJm
n) , (3.18)

which decompose the tangent space into (1,0)- and (0,1)-types, and satisfy the usual rela-

tionships for projection operators,

Π+ + Π− = 1

Π±Π± = Π±

Π∓Π± = Π±Π∓ = 0. (3.19)

Eqs. (3.17) can be easily inverted

Kmn =
(
Π+

m
m′

+ Π−
m

m′
)(

Π+
n

n′
+ Π−

n
n′

)
Km′n′

=
1

2
W+

1 gmn +
1

2

(
W+

2

)
mp

Jn
p − 1

4

[
(W3)mpq Ωn

pq
]−

(3.20)

In the following pages we shall implicitly use contorsion in our calculations and it is

convenient to have the relationship between the contorsion components and the intrinsic

torsion:

κsrt =
1

4
W+

1 Ω+
srt +

1

4
(W+

2 )sqΩ
−q

rt

+
i

2

{
(W3)suvΠ

+
r

uΠ+
t

v − (W 3)suvΠ
−
r

uΠ−
t

v
}

. (3.21)

The contorsion is anti-symmetric in its last two indices. For half-flat manifolds, however,

the contorsion is completely traceless

κsr
s = κs

s
r = 0. (3.22)

This follows easily from the expression given above when one uses the facts that W+
2 and

W3 are primitive.

4. The Ricci curvature of half-flat manifold

In this section we give expressions for the Ricci curvature in terms of the torsion classes.

However, before we do so let us state our convention for the various curvature tensors. The

Riemann curvature tensor is defined by

[∇m,∇n]V p = Rmnq
pV q (4.1)

and the Ricci tensor and scalar are

Rmn = Rmpn
p (4.2)

and

R = gmnRmn. (4.3)

– 9 –
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These definitions are valid for both six and seven dimensions.

Next, using the fact that Z is Ricci-flat and the Gauß-Codazzi relations it is easy to

show that the Ricci curvature of M̃ is given by

Rmn = −∂Kmn

∂z
− KKmn + 2KmrK

r
n. (4.4)

Because of G2 holonomy the Riemann curvature tensor of Z satisfies the following ‘self-

duality’ relationship [15]:

R̂MNPQ =
1

2
φ̃PQ

RSR̂MNRS . (4.5)

Taking {M = m,N = z, P = p,Q = z} components of this equation, we can derive an

expression for ∂zKmn which can then be used in (4.4) to obtain the following expression

for the Ricci curvature of M̃ :

Rmn = Ω+
n

rs∇rKsm − KKmn + KmrK
r
n. (4.6)

We can now use the expressions for the second fundamental form derived in the previous

section to express the Ricci curvature in terms of torsion classes:

Rmn = −3

4
Ω−

n
ps∂[pW

+
2 sm] −

1

2
J(m

p∇s
[
W3|sp|n) + W 3|sp|n)

]
(4.7)

−5

4
gmn(W+

1 )2 − 1

4
W+

1 W+
2 mrJn

r − i

8
W+

1

[
(W3 · Ω)mn − (W 3 · Ω)mn

]

−1

2
W+

2 mq W+
2 n

q − 1

16
W+

2 m
r
[
(W3 · Ω)nr + (W 3 · Ω)nr

]

−1

8
W+

2 v
r
[
W3mu

vΩn
u

r + W 3mu
vΩn

u
r

]

+
1

4

[
W3muvW 3n

st + W3nuvW 3m
st

]
Π+

s
uΠ+

t
v

−1

2

[
W3

s
muW3

u
pqΠ

+
n

pΠ+
s

q + W 3
s
muW 3

u
pqΠ

−
n

pΠ−
s

q
]

+
1

2

[
W3suvΠ

+
(m

uΠ+
|q|

vW
sq
3 n) + W 3suvΠ

−
(m

uΠ−
|q|

vW sq
3 n)

]

where we have used the notation (W3 · Ω)mn ≡ W3mpqΩn
pq,etc. The scalar curvature is

R =
15

2
(W+

1 )2 − 1

4
W+

2 mnW+
2

mn − 1

6
W3pqrW 3

pqr. (4.8)

In the above calculations we have found the following SU(3) identities to be of great use [16]:

Ω
pqr

Ωstu = 48Π+
s

[pΠ+
t

qΠ+
u

r]

Ω
pqr

Ωpst = 16Π+
s

[qΠ+
t

r]

Ω
pqr

Ωpqs = 16Π+
s

r. (4.9)

The expression (4.7) for the Ricci curvature in terms of the torsion classes is the main

technical result of this paper. In the rest of the paper we study some applications of

eqs. (4.7), (4.8).
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5. Iwasawa and general nilpotent manifolds

Our computation of the Ricci curvature in the previous section is algebraically quite in-

volved. Thus we think it is a good idea to have some checks on the expressions (4.7), (4.8)

from a class of manifolds whose Ricci curvatures are already known. To this end we turn

to nilmanifolds in this section.

Half-flat manifolds can be nilmanifolds. This class includes the Iwasawa manifolds,

which are compact quotient spaces of the form M = Γ\G, where G is the complex Heisen-

berg group and Γ is the the subgroup of Gaussian integers [17]. The points defined by the

complex coordinates zi=1,2,3 and z
′

i=1,2,3 are identified on the Iwasawa manifold whenever




1 z
′

1 z
′

3

0 1 z
′

2

0 0 1


 =




1 m1 m3

0 1 m2

0 0 1







1 z1 z3

0 1 z2

0 0 1


 , (5.1)

where mi=1,2,3 ∈ Z + iZ [17, 18]. Thus,

z1 ∼ z1 + m1

z2 ∼ z2 + m2 (5.2)

z3 ∼ z3 + m3 + m1z2 (5.3)

Such manifolds can be interpreted as twisted tori.

The Iwasawa manifolds and more general nilmanifolds provide a means of explicit ver-

ification of our torsion class expressions for the Ricci tensor of the affine connection, (4.7),

and the corresponding Ricci scalar, (4.8) (which is derived independently of (4.7)). The

Ricci tensor Rmn for a particular manifold can, of course, be determined directly from the

affine (Christoffel) connection Γ,

Rmn ≡ Rr
mrn = grsRsmrn (5.4)

= Γr
mr,n − Γr

mn,r + Γs
mrΓ

r
ns − Γs

mnΓr
rs, (5.5)

where the affine connection is defined by,

Γs
mn ≡ 1

2
grs [gnr,m + gmr,n − gnm,r] . (5.6)

Thus, our torsion class expression for the Ricci tensor, (4.7), and for the Ricci scalar, (4.8),

derived using the Gauß-Codazzi relations and the G2 holonomy ‘self-duality’ relationship

can be compared, respectively, to affine expression (5.5) and its trace. In order to sub-

stantiate the veracity of different subsets of terms in (4.7) and (4.8), we performed this

comparison for three different manifolds. Two of our three chosen manifolds are Iwasawa

manifolds [16, 17] and our third is a more complicated, two-step example of a nilmani-

fold [8], produced by slight modification to the first Iwasawa manifold.

The outcomes of our comparisons were positive. The validity of (4.7) and (4.8) was

supported: For the first of the Iwasawa manifolds, only W+
1 and W+

2 are non-zero [16];

for the second, only W3 is non-zero [17]; for the more general nilpotent manifold, W+
1 ,
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W+
2 , and W3 are all non-zero [8]. Thus, we separately verified the contributions from

{W+
1 , W+

2 }, from {W3}, and the mixed contributions from the two subsets.

The metric for Iwasawa manifolds can perhaps be most simply expressed in terms of

an orthonormal tangent basis of one-forms ei, i = 1, . . . , 6. In this basis, the fundamental

2-form J and the 3-form Ω may be expressed locally as,

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6. (5.7)

Ω =
[
e1 ∧ e3 ∧ e6 + e1 ∧ e4 ∧ e5 + e2 ∧ e3 ∧ e5 − e2 ∧ e4 ∧ e6

]

−i
[
e1 ∧ e3 ∧ e5 − e1 ∧ e4 ∧ e6 − e2 ∧ e3 ∧ e6 − e2 ∧ e4 ∧ e6

]
. (5.8)

(Recall footnote 4 regarding the phase of Ω.)

The {W+
1 , W+

2 } Iwasawa manifold of [16] is specified by the metric

ds2 =

4∑

i=1

(dxi)2 + (dx5 − x1dx4 + x3dx2)2 + (dx6 − x1dx3 − x4dx2)2. (5.9)

The coordinates xi can be used to define the following tangent basis

ej = dxj , j = 1, . . . , 4, (5.10)

e5 = dx5 − x1dx4 + x3dx2, (5.11)

e6 = dx6 − x1dx3 − x4dx2, (5.12)

with exterior derivatives of the tangent forms specified by

dej = 0, j = 1, . . . , 4, (5.13)

de5 = −e1 ∧ e4 − e2 ∧ e3, (5.14)

de6 = −e1 ∧ e3 + e2 ∧ e4, (5.15)

The torsion classes, expressed in the tangent basis, are

W+
1 = −2

3
(5.16)

W+
2 = −4

3

[
e1 ∧ e2 + e3 ∧ e4 − 2e5 ∧ e6

]
. (5.17)

W3 = 0 (5.18)

With only non-zero W+
1 and W+

2 , (4.7) reduces to

Rmn(W+
1 ,W+

2 ) = −3

4
Ω−

n
ps∂[pW

+
2 sm] −

5

4
gmn(W+

1 )2

−1

4
W+

1 W+
2 mrJn

r − 1

2
W+

2 mq W+
2 n

q. (5.19)
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The Ricci tensor as computed from the above torsion classes and directly from the metric

agree and is given by: In the coordinate basis,

Rmn =




1 0 0 0 0 0

0 1 − (x3)2 − (x4)2 −x1x4 x1x3 −x3 x4

0 −x1x4 1 − (x1)2 0 0 x1

0 x1x3 0 1 − (x1)2 x1 0

0 −x3 0 x1 −1 0

0 x4 x1 0 0 −1




, (5.20)

which in the tangent basis simplifies to

Rm̄n̄ = Diag{1, 1, 1, 1,−1,−1}. (5.21)

where barred indices refer to tangent space. Similarly, the torsion class computation of the

Ricci scalar is consistent with the trace of the metric-produced Ricci tensor:

R = Rmngnm

=
15

2
(W+

1 )2 − 1

4
W+

2 mnW+
2

mn (5.22)

= 2 (5.23)

The metric for the {W3} Iwasawa manifold of [17] is produced by altering in (5.9) the

overall sign of the two terms in brackets with dx5, and therefore simultaneously altering the

signs of the terms on the right-hand sides of (5.11) and (5.14). The metric then becomes,

ds2 =

4∑

i=1

(dxi)2 + (dx5 + x1dx4 − x3dx2)2 + (dx6 − x1dx3 − x4dx2)2, (5.24)

with tangent basis

ej = dxj , j = 1, . . . , 4, (5.25)

e5 = dx5 + x1dx4 − x3dx2, (5.26)

e6 = dx6 − x1dx3 − x4dx2, (5.27)

and exterior derivatives

dej = 0, j = 1, . . . , 4, (5.28)

de5 = e1 ∧ e4 + e2 ∧ e3, (5.29)

de6 = −e1 ∧ e3 + e2 ∧ e4. (5.30)

The only non-zero torsion class for this manifold is

W3 =
1

2
(e1 + ie2) ∧ (e3 + ie4) ∧ (e5 − ie6). (5.31)
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Hence, the torsion expression for the Ricci tensor reduces to

Rmn(W3) = −1

2
J(m

p∇s
[
W3|sp|n) + W 3|sp|n)

]
(5.32)

+
1

4

[
W3muvW 3n

st + W3nuvW 3m
st

]
Π+

s
uΠ+

t
v

−1

2

[
W3

s
muW3

u
pqΠ

+
n

pΠ+
s

q + W 3
s
muW 3

u
pqΠ

−
n

pΠ−
s

q
]

+
1

2

[
W3suvΠ

+
(m

uΠ+
|q|

vW
sq
3 n) + W 3suvΠ

−
(m

uΠ−
|q|

vW sq
3 n)

]
.

The two computations of the Ricci tensor for this second Iwasawa manifold are again

consistent. In the coordinate basis,

Rmn =




1 0 0 0 0 0

0 1 − (x3)2 − (x4)2 −x1x4 x1x3 x4 x3

0 −x1x4 1 − (x1)2 0 x1 0

0 x1x3 0 1 − (x1)2 0 −x1

0 x4 x1 0 −1 0

0 x3 0 −x1 0 −1




, (5.33)

which in the tangent basis simplifies, as in (5.22), to

Rm̄n̄ = Diag{1, 1, 1, 1,−1,−1}. (5.34)

The torsion class computation of the Ricci scalar is again consistent with the trace of the

metric-produced Ricci tensor:

R = Rmngnm

= −1

6
W3pqrW 3

pqr (5.35)

= 2 (5.36)

The {W+
1 , W+

2 , W3} two-step nilmanifold is generated by removing the −x1dx3 in

brackets with dx6 in the metric (5.9) and therefore removing the −x1dx3 term in (5.12)

and the −e1 ∧ e3 term in (5.15). The metric becomes

ds2 =
4∑

i=1

(dxi)2 + (dx5 − x1dx4 + x3dx2)2 + (dx6 − x4dx2)2. (5.37)

with tangent basis defined by

ej = dxj , j = 1, . . . , 4, (5.38)

e5 = dx5 − x1dx4 + x3dx2, (5.39)

e6 = dx6 − x4dx2, (5.40)

and exterior derivatives

dej = 0, j = 1, . . . , 4, (5.41)

de5 = −e1 ∧ e4 − e2 ∧ e3, (5.42)

de6 = +e2 ∧ e4, (5.43)
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This alteration (5.12) generates a manifold for which all three half-flat torsion classes are

non-zero:

W+
1 = −1

2
(5.44)

W+
2 = −

[
e1 ∧ e2 + e3 ∧ e4 − 2e5 ∧ e6

]
, (5.45)

W3 = − i

8

[
3e1 ∧ e3 ∧ e5 + e1 ∧ e4 ∧ e6 + e2 ∧ e3 ∧ e6 + e2 ∧ e4 ∧ e5

]

+
1

8

[
3e2 ∧ e4 ∧ e6 + e2 ∧ e3 ∧ e5 + e1 ∧ e4 ∧ e5 + e1 ∧ e3 ∧ e6

]
. (5.46)

The torsion class and metric computations of the Ricci tensor are again matching for Ricci

tensor and for Ricci scalar. In the coordinate basis,

Rmn =




1
2 0 0 0 0 0

0 1 − (x3)2 − 1
2(x4)2 0 x1x3 −x3 1

2x4

0 0 1
2 0 0 0

0 x1x3 0 1 − (x1)2 x1 0

0 −x3 0 x1 −1 0

0 1
2x4 x1 0 0 −1

2x4




, (5.47)

or equivalently in the tangent basis,

Rm̄n̄ = Diag{1

2
, 1,

1

2
, 1,−1,−1

2
}, (5.48)

and

R =
3

2
. (5.49)

6. Half-flat manifolds from mirror symmetry

In this section we review the results of [9], in which the authors found that a certain kind of

half-flat manifolds arise naturally within the flux compactification schemes of string theory.

These half-flat manifolds appear when mirror symmetry is extended to the realm of type II

string theories with non-zero NS fluxes compactified on a background Calabi-Yau manifold,

and thus they bear close connection to Calabi-Yau manifolds. We also present here, for

the first time, explicit expressions for the Ricci tensor, as well as a new constraint for the

Kähler moduli of the compactification of string theory on these half-flat manifolds.

6.1 The mirror duals of CY manifolds with NS fluxes

In [9] Gurrieri et al. made the conjecture that the mirror symmetric dual of type IIB (A)

string theory compactified on a Calabi-Yau W with ‘electric’ NS fluxes is given by IIA (B)

string theory on a half-flat manifold M̃, which may be thought of as a kind of deformation

of the Calabi-Yau manifold M; this latter Calabi-Yau is the one which is the canonical
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mirror dual of W in the absence of fluxes.6 Gurrieri et al. also showed that the low energy

effective action of IIA supergravity on M̃ is the same as IIB on W with NS fluxes, thus

furnishing strong evidence for their conjecture.

Although M̃ is half-flat, a complete characterization of this manifold and its exact

correspondence to the ‘underlying’ Calabi-Yau M is still not possible. However, at least

in the large volume and ‘large complex structure’ limit (the meaning of the latter limit is

explained in more detail in the next sub-section), it still seems possible to compute most of

the quantities relevant for Leff on this manifold by using the standard results on Calabi-Yau

manifolds.

In order to establish notation before we present our results regarding M̃, we shall

review some of the results and methods of Gurrieri et al. Our aim is not to try to be

exhaustive and the interested reader may look up [9] for more details.

For definiteness, consider type IIB on W with non-zero NS fluxes. These fluxes are

characterized by a set of integers eI which on the type IIB side are given by

HB
3 = dB̃B

2 + eIβ
I (6.1)

where HB
3 is the ten-dimensional NS 3-form field strength and B̃B

2 is the four-dimensional

NS 2-form potential, and βI with I = 0, 1, . . . , h2,1(W), are half of the standard real

symplectic basis of the third cohomology group H3(W) of W.7 (This, incidentally, is the

meaning of ‘electric fluxes’; the coefficients of αI , the other half of the symplectic basis,

would be the magnetic fluxes, but they are set to zero in [9]. We also set the magnetic

fluxes to zero. For the inclusion of magnetic fluxes see [26]) It is also convenient to group

the symplectic vectors βI and their coefficients eI into two sets, the first consisting of β0

and e0 and the second βi and ei with i = 1, . . . , h2,1(W). We shall soon see the motivation

for doing so, as they play quite different roles on the mirror manifold.

Turning on fluxes on a Calabi-Yau background still preserves N = 2 supersymmetry

of the low energy effective theory but now, instead of being a supergravity theory coupled

to hyper-, tensor- and vector-multiplets, the theory becomes massive (i.e., a potential

is induced), and some of the Peccei-Quinn symmetries become gauged. Because N = 2

supersymmetry of Leff depends solely on the structure group of the internal manifold being

SU(3), this singles out for the mirror candidate only those manifolds which have SU(3) as

their structure group. Calabi-Yau manifolds are of course a very special subset of this class

for which the holonomy group of the Levi-Civita connection is also SU(3).

In string theory on Calabi-Yau manifolds the Kähler form J naturally combines with

the internal components of the NS gauge potential B to form a complex closed two form

B + iJ . The moduli space relevant for string theory is the complexified Kähler cone and it

is the parameter space of the deformation of this complexified two-form. However, when

6We denote by fM only those half-flat manifolds which may be thought of as deformations of a genuine

Calabi-Yau manifold M as result of applying mirror symmetry to the Calabi-Yau W with NS fluxes. Note

that because we have considerable choice in choosing the fluxes on W, we should, in principle, denote the

dual by fM{ei}, where {ei} is the set of flux parameters, but since we do not deal with issues arising from

this choice, we shall not overburden our notation and stick with fM.
7We shall not be too careful about distinguishing between real and integral cohomology.
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one turns-on NS fluxes, the real part of this two form is no longer closed. As mentioned

above, the mirror manifold, because of N = 2 supersymmetry, must be an SU(3) manifold

and hence must have globally defined Ω and J . However, Ω and J no longer have the

interpretation of being the holomorphic three form that defines a Calabi-Yau uniquely, and

the Kähler form, respectively; but now they are components of SU(3) structure. In the

familiar Calabi-Yau setting, mirror symmetry may be seen as exchanging these two SU(3)

structure forms between the two mirror-symmetric pair. Thus it seems natural to assume

that in the more generalized case at hand mirror symmetry continues to do the same. Then

on the presumed mirror of W with fluxes, the real part of Ω can no longer be closed8 as

its mirror counterpart B is no longer closed. Thus we see the mirror can no longer be

a Calabi-Yau manifold. Let us denote this manifold by M̃ as we expect it to have some

connection to the Calabi-Yau M which is the canonical mirror dual of W.

Since SU(3) structure is classified by the torsion classes that appear in dJ and dΩ, the

authors of [9] then proceeded to identify the various non-zero torsion classes of M̃ with

the SU(3) representations of the various cohomology groups of M. The rationale for this

is as follows. The various cohomology groups of a Calabi-Yau manifold furnish different

representations of SU(3). On the other hand, in the small flux limit M̃ should, at least

locally, look like M and so all the forms which exist on the latter should also exist on the

former furnishing the same representations of SU(3). So it is sensible to identify these SU(3)

representations with corresponding torsion classes which appear in the exterior derivatives

of J and Ω on M̃. This heuristic argument was made more precise in [9] in various steps

and it was shown that the surviving torsion classes lead to M̃ being a half-flat manifold.

Also it was shown that the standard basis of the cohomology groups of M should satisfy

on M̃ the following relations:

dα0 = eiω
i, dαα = dβa = 0, dωi = eiβ

0, dω̃i = 0, . (6.2)

As a consequence, due to the standard definition of J and Ω (see appendix B for more

details), we also have:

dJ = vieiβ
0 (6.3)

dΩ+ = eiω̃
i. (6.4)

In the above equations we have αa and βa, with a = 0, 1, . . . , h2,1(M) and α, β =

1, . . . , h2,1(M), are the standard symplectic basis of the third cohomology group of the

Calabi-Yau manifold M. Similarly ωi and ω̃i are the basis for H1,1(M) and H2,2(M)

respectively. vi are half of the coordinates on the Kähler moduli space of M and is defined

by J = viωi. Note that in the above expressions e0 is absent; it appears, after dualizing,

as the space-time components of the NS field strength on type IIA theory and thus acts as

a sort of ‘cosmological constant’ in Leff .

Since we expect the kinetic terms in Leff to remain the same, it was further assumed

in [9] that the above-mentioned forms should continue to satisfy the same integral relations

8There is some arbitrariness in choosing the real and imaginary part of Ω but this is not central to our

discussion at the moment.
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on M̃ as they do on M. In other words we still have
∫

fM
αa ∧ βb = δb

a, (6.5)

∫

fM
αa ∧ αb =

∫

M
βa ∧ βb = 0 (6.6)

and ∫

fM
ωi ∧ ω̃j = δi

j . (6.7)

However, since these forms are no longer harmonic due to (6.2), they do not have the

same topological significance for M̃ as they did for M. Indeed it was noted in [9] that the

dimensions of the second and the third cohomology group of M̃ changes with respect to

those of M, but in a way that the Euler characteristics of the two manifolds are the same.

Note that the expressions in (6.2)–(6.4) are given in a fixed special geometric gauge.

The above rules for taking exterior derivatives and performing integrals on M̃, are only

valid in the large volume limit (i.e. the supergravity limit) and the large complex structure

limit. The latter condition comes from the fact that on the IIB side one is in the large

volume limit, since the gravitational back-reaction on the geometry due to the fluxes is

ignored, and hence on the IIA side, by mirror symmetry, one must be in the large complex

structure limit. Using the above rules the authors of [9] then derived the effective action of

type IIA on M̃ and showed that it is the same as the effective action of IIB compactified

on the Calabi-Yau W with NS fluxes.

Note that the dimensional reduction in [9] could have been carried out, in principle,

using a harmonic basis on M̃ but it is not clear that that basis represents the physically

meaningful degrees of freedom. Thus from a physical point of view it is more convenient

to continue using the language of Calabi-Yau compactifications and interpret the extra

terms that arise from the non-closure of the forms as being terms for the effective potential

generated for the moduli as a result of fluxing.9 This is also the natural language in

which to make connection with gauged supergravity. Thus we continue to call the scalar

fields, familiar from CY compactification, ‘moduli’ but now they come with a non-vanishing

potential, which fixes them partially.

6.2 Torsion classes and the Ricci curvature

Let us now deal with the issue of ‘large complex structure’ alluded to before. What is

the meaning of the large complex structure limit for a manifold which is not complex?

Recall that at a generic point on the complex structure moduli space of a Calabi-Yau, the

pre-potential is a complicated, homogeneous holomorphic function of degree two. But in

the large complex structure limit this function becomes a simple polynomial. Thus, we

interpret the above statement by assuming that the prepotential of the complex structure

moduli space takes this latter simple form:

G = − 1

3!

καβγzαzβzγ

z0
+

1

2
Sαβzαzβ + z0Aαzα. (6.8)

9By ‘fluxing’ we mean ‘to introduce fluxes into a geometry erstwhile without fluxes’.
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where {z0, zα} are projective coordinates and following [9] we set z0 = 1 in what follows.

We now derive expressions for the torsion classes from eqs. (6.3) and (6.4) in the

language of the moduli space of Calabi-Yau manifolds [19, 20]. To do so we recall the

expression for β0 in the large complex structure limit (see appendix B.2.1 for more details):

β0 =
1

4VΩ− +
yα

4V (χα + χ̄ᾱ) (6.9)

where yα is the imaginary part of the complex structure modulus zα, and χα and χ̄ᾱ span

H2,1 and H1,2 of M, respectively. Using the above identification it is easy to show that

W+
1 =

1

6

e · v
V

W+
2 = −e · ω

4V +
1

3

e · v
V J

W3 =
e · v
4V χ

(6.10)

where we have introduced the notation

yαχα ≡ χ

e · v ≡ eiv
i etc.

(6.11)

Now that we have identified the individual torsion classes we can use eq. (4.7) to find

expressions for the Ricci tensor and the Ricci scalar of M̃. We choose to express our

results in complex coordinates and thus we have

Rµν̄ =
e2

16V2
gµν̄ − 3

16

(e · v)2

V2
gµν̄ − 3i

16

e · v
V2

(e · ω)µν̄ − 1

32V2
(e · ω)µρ̄(e · ω)ν̄

ρ̄

+
(e · v)2

64V2
χ̄µσ̄τ̄χν̄

σ̄τ̄ − (e · v)2

32V2
χµθτ̄ χ̄ν̄

θτ̄ (6.12)

Rµν = −i
e2

128V2
(χ̄ · Ω)µν +

(e · v)2

32V2
χµ

ψσ̄χνψσ̄

+
(e · v)

128V2

[
1

2
(e · ω)µ

ρ(χ̄ · Ω)νρ + (e · ω)θ
ρχ̄µ

ψθΩνψρ

]
(6.13)

and the Ricci scalar is

R =
3e2

8V2
+

3(e · v)2

8V2
− 1

16V2
(e · ω)µρ̄(e · ω)µρ̄ − 1

32

(e · v)2

V2
χµθτ̄ χ̄

µθτ̄ (6.14)

and so we have ∫

fM
d6y

√
g R =

1

8

e2

V (6.15)

which is in agreement with the result derived in [9] when one takes into account the gauge

choice ‖Ω‖2 = 8.

Next, we shall use a consistency argument involving eq. (6.15) to establish whether we

can derive any new condition on M̃ that is not part of the rules, (6.2), proposes in [9]. To

do this we shall consider the variation of (6.15). The left hand side of this variation will
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involve the explicit expressions, (6.12) and (6.13), for the Ricci tensor and we can evaluate

these integrals using properties of CY moduli spaces, as was done in deriving the effective

action in [9]. On the other hand the variation of the right hand side of (6.15) may also be

evaluated by using the standard results of CY moduli spaces. These two expressions, of

course, should be identical. If not, then any new rules that we may derive in imposing this

equivalence, should then be appended to the list (6.2).

On a manifold in which we compute the Ricci curvature from the metric, this identity is

automatically satisfied. But for the case at hand, we only have indirect information about

the geometric quantities on M̃ and it may be that the rules (6.2) are not exhaustive to

ensure that such identities are automatically satisfied. Thus such consistency arguments

are valuable since they furnish us with further information regarding these manifolds.

Indeed, below we find a new constraint on the Kähler moduli space in this way. Note that

there may be other such consistency checks that may yield new, further constraints on the

moduli spaces. For the sake of greater readability, details of the derivations of many of the

formulae used in the following pages are relegated to appendix C.

Returning to the variation of (6.15) we get

∫

fM

√
gd6y δgmn Rmn =

1

8V δe2 − e2

V (v · δv) (6.16)

where the term with δRmn drops out because it is a total derivative.10 In the above

equation we have δe2 = eiejδG
ij , where Gij is the inverse of the metric on the Kähler

moduli space, and (v · δv) = viδvjGij . More details regarding the derivation of (6.16) can

be found in appendix C. Note that, the above expression is given in special coordinates

and is not coordinate invariant.

Let us choose our moduli fields to be related to the variation of the metric by

δgµν̄ = −iδvi(ωi)µν̄

δgµν =
1

8
(Ω · χ̄ᾱ)µνδz̄ᾱ.

(6.17)

In deriving the effective action there is an arbitrariness in choosing the phase in the second

of these equations [19, 20]. Our choice here is motivated by two facts. First, the right hand

side of (6.16) is entirely in terms of variation of Kähler moduli, and hence the terms on the

left hand side that involve variation of the complex structure moduli must be transformed

to the appropriate variation of the Kähler moduli. For the conventions that we are using

(z0 = 1 and ‖Ω‖2 = 8) it can be shown that the prefactor above has to be ±1. Secondly,

the condition that we get below (eq. (6.24)) from (6.16) this way, we apply to the case

where the underlying Calabi-Yau M has h1,1(M) = 1 (e.g., the famous quintic has this

property) and in this case, as shall be shown below, the dependence of (6.16) on the flux

parameters {ei} drops out. The resulting equation in this limiting case must be an identity

on the moduli space of the Calabi-Yau M with h1,1(M) = 1. This further fixes the phase

to be +1. We shall return to this second point below.

10Checking that the δRmn term is a total derivative would be another consistency check on the rules (6.2)–

(6.7), but we leave that as a future exercise.
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Using (6.17) and (6.12) we find for mixed part of the l.h.s. of (6.16)

2

∫

fM

√
gd6y δgµν̄Rµν̄ = − 1

2

(e · v)2

V (v · δv) − 1

2

(e · v)

V (e · δv) +
Kijk

32V2
δviejek

+
1

16

(e · v)2

V2

∫

fM
d6ξδvi

[
1

2
(ωi)

µν̄ χ̄µσ̄τ̄χν̄
σ̄τ̄ − (ωi)

µν̄χµστ̄ χ̄ν̄
στ̄

]

≡ X

(6.18)

where ei = Gijej , and Kijk are the Yukawa couplings in the Kähler sector (defined in

appendix B) and we have introduced complex coordinates ξµ and ξ̄µ̄ such that d6y =

id6ξ ≡ id3ξd3ξ̄. By noting that all six forms are proportional it is easy to evaluate the

integrals on the second line above and thus we find

X = −1

2

(e · v)

V (e · δv) +
1

32V2
Kijkδv

iejek. (6.19)

Similarly, by using (6.17) and (6.13), we find for the pure part of the l.h.s. of (6.16)

∫

fM

√
gd6y

(
δgµνRµν + δgµ̄ν̄Rµ̄ν̄

)
= − e2

2V δyαyβGαβ̄

≡ Y

(6.20)

where Gαβ̄ is the hermitian metric on the complex structure moduli space of M. More

details on evaluating these integrals can be found in appendix C.3.

As mentioned above, the expression for X + Y that we get this way involves moduli

from both the Kähler and the complex structure sectors. To compare to the r.h.s. of (6.16)

we must be able to transform the expression (6.20) into a statement about the variation

on the Kähler moduli space. To do this note that as a consequence of SU(3) structure we

have

Ω ∧ Ω = −4i

3
J ∧ J ∧ J. (6.21)

The left hand side of this relation only depends on complex structure while the right hand

side on Kähler structure. Varying both sides and using Kodaira’s formula (B.16), and then

integrating we get, in the gauge we are using,

Gαβ̄δyαyβ = Gijv
iδvj . (6.22)

This way we get

X + Y = −3

2

(e · v)

V (e · δv) +
δe2

8V + 2
(e · v)2

V (v · δv) − e2

V (v · δv) (6.23)

where we have used (C.13) to transform the Kijke
iejδvk term in (6.19). Putting all of this

together in (6.16) we finally find the advertised constraint on the Kähler moduli space:

(e · v)2(v · δv) =
3

4
(e · v)(e · δv). (6.24)
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Now we choose M to be a Calabi-Yau manifold with h1,1(M) = 1. Such M are allowed

since the mirror W then has h2,1 = 1 and two flux parameters e0 and e1 enter in the

picture. However, as mentioned above, of these only the latter enter into e · v and thus

drop out of (6.24). Then using Gvv = 3
4v−2, the above equation becomes a trivial identity.

This is a consistency check for eq. (6.24).

Next by using the identity (which is derived in appendix C)

δ
1

V = − 4

V (v · δv) (6.25)

we find that eq. (6.24) implies

e · v = CV 1

3 (6.26)

where C is a constant on the moduli space. Note that eqs. (6.24) or (6.26) are valid for any

M̃, not just for the ones corresponding to h1,1(M) = 1.

From this expression it is easy to find out how the volume of the internal space changes

as a function of the ‘seventh coordinate’ z (not to be confused with the complex structure

moduli) of the G2 generalized cylinder. Using Hitchin’s flow equation (3.11) we find

V = V0

(
1 − z

z0

)3

2

(6.27)

where z0 is another integration constant and

V0 =

(Cz0

3

) 3

2

. (6.28)

This implies that the particular supergravity approximation we have made is only valid in

the region away from z ≈ z0.

7. Discussions and conclusions

This paper grew out of an effort to gain a deeper understanding of the role of the half-flat

manifolds M̃ in string theory and their relationship to the Calabi-Yau manifold M. Ideally

one should be able to understand the theory that arises from M̃ independently of M as

well as having a clear idea of how they are related. So far we know how to compute Leff

on M̃ only by extending our intuitions of M within a very limited regime. Even in that

regime it is not clear to us that all that can be computed on M̃ has been computed. Our

computation of the Ricci curvature of M̃ is another step toward obtaining the complete list

of objects that we can compute, after Leff [9]. The computation of the Ricci curvature of

M̃ has not been discussed in the literature before. The general expression that we derived

for the Ricci curvature of a generic half-flat manifold (not just M̃) has been independently

computed in [30]. By using the expression for the Ricci curvature of M̃ we have found,

by imposing certain consistency requirements, a very simple and natural constraint, (6.24)

or (6.26), on the ‘Kähler’ moduli space. We believe this constraint has not been discussed
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in the literature before. Hitchin’s flow equations then imply how the volume (and hence

the effective four dimensional Newton’s constant) varies with the direction transverse to a

domain wall (which is the BPS solution of Leff). This formula, (6.27), for the volume seems

to crop-up whenever one tries to incorporate fluxes in a Calabi-Yau manifold. It had made

its appearance in M-theory [31] and heterotic M-theory [32] before.

It is well known by now that when fluxes are introduced (whether they originate from

the ‘matter’ sector [38, 37] or the ‘geometric’ or ‘NS’ sector [9]) Leff is transformed from

supergravity coupled to matter multiplets to a gauged, massive supergravity. The effect of

the induced potential is to fix some of the moduli. Here we have found a certain relation

that eliminates one of the moduli from the Kähler moduli space. However, this relationship

becomes trivial when the underlying Calabi-Yau has just one modulus in the Kähler sector.

Thus this can not be used to fix the volume modulus of the compactification. It would be

interesting to see how this condition is related to moduli-fixing via the generated potential.

In [9] (also see [10]) a Gukov-Vafa-Witten type of superpotential [33] was proposed,

which plays an important role in the non-perturbative aspects of N = 2 compactifications

of M-theory and string theory. This potential has the form [9]

W | ∝
∫

fM
(B + iJ) ∧ dΩ (7.1)

and it was evaluated, in the limit considered here, to be

W | ∝ eis
i (7.2)

where W | denotes the projection of W (which is defined on superspace) to the lowest spin

component and si = ui + ivi with ui being the moduli corresponding to NS potential

B = uiωi (see appendix B for more details). Due to our calculation we are able to present

a different form of this result. It is easy to see using (6.26) that we have

W | ∝ eiu
i + iCV 1

3 . (7.3)

Recently, an old non-renormalization theorem of string theory [34] was generalized [35] to

take into account the non-perturbative aspects of the flux-compactification of [36] which

has played an important role in the landscape scenario. It would be an interesting exercise

to see whether some of the methods developed in [35] can be applied to the case at hand.

Next, let us discuss some of the subtleties left open by the works on this subject so

far and what ought to be done to fill in the gaps. Following the lead of [9] we have used,

in section 6, many formulae whose validity is strictly true only on Calabi-Yau manifolds.

These formulae don’t seem to be in contradiction with the new modifications suggested

by (6.2) and (6.26). However, these formulae (of which Strominger’s or Kodaira’s formulae

are just two) have deep geometric and topological significance for Calabi-Yau manifolds.

Thus it seems to us that it is important to find how these formulae should be interpreted

for the half-flat manifold M̃.

An important step in this direction was taken by a recent paper [24] in which the

authors try to make explicit the minimal set of geometric assumptions that are inherent in
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deriving Leff from compactification on a manifold with SU(3) structure. Other more formal

developments have been made in [25, 26]. Very briefly, these works explore a generalized

set-up, based on the idea of ‘pure spinors’, that is natural for mirror symmetry with

fluxes. These works parallel the introduction, by Hitchin [27], of ‘generalized Calabi-Yau’

manifolds in mathematics. On a generalized Calabi-Yau manifold the almost complex

and symplectic structures are considered to be a unitary object. Complex, symplectic

and Calabi-Yau manifolds may be thought of as special cases when the various structures

become integrable. (More details of this construction can be found in [28].)

Although, we hope to return to some of the issues left open by the present work in

the light of some of the approaches mentioned above, we suggest here another approach,

which might also lead to deeper insights into the structure of M̃ (as opposed to the more

general SU(3) manifolds). A while ago Vafa and Shatashvili had initiated a study into the

CFT of strings on manifolds with G2 (and other exceptional) holonomy [29]. The half-flat

manifolds M̃ do not occur as a solution of string theory but rather the natural solution

is of the form R
3 × Z where Z is a generalized cylinder with G2 holonomy. Thus to go

beyond the various approximations that encumber one’s progress, it might be a good idea

to revisit some of the results obtained in [29] for the generalized cylinder Z and try to

rephrase them, with applications to half-flat manifolds in mind. This is perhaps quite an

ambitious project but the gains might be worth the efforts.

One of the aspects of string theory today is that a string vacuum (in which we also

include members of the ‘flux vacua’) can not be understood in isolation. An isolated

solution of string theory doesn’t seem to make sense. It is important to understand these

new solutions, not only ab initio but also in relation to other ‘nearby’ solutions. It seems to

us that an approach solely based on Leff can only go so far, and that a more CFT approach

is needed to understand this space of solutions. Of course for many of the solutions that

are being considered today, the CFT approach is not enough since these solutions involve

many non-perturbative effects.

We would like to end this paper with a remark on the compactification of E8 × E8

heterotic string theory on M̃. Since M̃ are closely related to M, it is natural to enquire how

these new manifolds are related to the famous phenomenology programme of string theory

that began in [41]. Some important steps have already been taken in that direction [39, 40]

but there is much work to be done. Important for possible heterotic applications is that,

due to the Green-Schwarz anomaly, stringy aspects (i.e., α′ corrections) are expected to

play an important role [41, 42]. So far there has been very little investigation of those

aspects of M̃ that are relevant beyond the specific supergravity approximation that we

also adopted here. This, again, brings us back to the G2 picture alluded to above (which

is also central to the derivations of the present paper). We believe some of the methods

used in this paper can be extended to include some of those stringy aspects. This question

is currently under study by the present authors [43].
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A. Differential forms

In this appendix we collect our conventions for forms. A p form Ap is defined to be

Ap =
1

p!
Am1...mp

dxm1 ∧ . . . ∧ dxmp . (A.1)

The Hodge star operator ∗ is defined by it action on the basis of p forms

∗ (dxm1 ∧ . . . ∧ dxmp) =

√
|g|

(n − p)!
ǫm1...mp

mp+1...mn
dxmp+1 ∧ . . . ∧ dxmn (A.2)

where n is the total number of dimensions of spacetime, |g| is the modulus of the determi-

nant of the metric tensor and ǫm1...mn
is the completely antisymmetric tensor density in n

dimensions. Thus the action of performing Hodge duality twice has the following effect

∗2Ap = (−1)p(n−p)+tAp (A.3)

where t is 1 if the manifold is Lorentzian and 0 if it is Riemannian.

If we have two p forms Ap and Bp then we have

Ap ∧ ∗Bp =

√
|g|

p!
Am1...mp

Bm1...mpdx1 ∧ . . . ∧ dxn. (A.4)

If we set Cp+q = Ap ∧ Bq then as a consequence of the normalization (A.1) we have

Cm1...mp+q
=

(p + q)!

p!q!
A[m1...mp

Bmp+1...p+q]. (A.5)

Now let Fp+1 = dAp be a p + 1 form, where d is the exterior derivative. It is defined

to be

dAp =
1

p!
∂qAm1...mp

dxq ∧ dxm1 ∧ . . . ∧ dxmp (A.6)

where ∂q ≡ ∂
∂xq . Thus we have

Fqm1...mp
= (p + 1)∂[qAm1...mp]. (A.7)

B. Calabi-Yau moduli spaces

In this appendix we collect some facts about the moduli spaces of Calabi-Yau three-folds.

We do not aim to present a complete description of these spaces but rather to list the

mathematical results used in the main text (in the context of half-flat manifolds) and also

to set-out our conventions. Our main sources for this appendix are [19 – 23].

The moduli of a Calabi-Yau three-fold M naturally separates into two classes: Kähler

class deformations and complex structure deformations. We describe relevant aspects of

the spaces of these two types of deformations below.
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B.1 Kähler deformations

The deformations of the Kähler structure of a Calabi-Yau threefold M are in one-to-one

correspondence with the elements of H1,1(M, Z) and are given in terms of the harmonic

basis of that cohomology group. However, in string theory it is natural to complexify the

Kähler form by adding to it the components of the NS two-form B with its indices tangent

to M
B + iJ = ωis

i with si = ui + ivi (B.1)

where ωi, with i = 1, . . . , h1,1(M), are the basis of H1,1(M, Z) with h1,1(M) the cor-

responding Hodge number. si are complex parameters which in string theory become

dynamical fields in the four dimensional effective action.

The space H2,2(M, Z) is of course isomorphic to H1,1(M, Z) and we can choose a dual

basis {ω̃i} for the former in the following sense

∫

M
ωi ∧ ω̃j = δi

j . (B.2)

Some frequently used quantities, in the description of the effective actions for both

type II and heterotic string theory compactifications, are

K =

∫

M
J ∧ J ∧ J

Ki =

∫

M
ωi ∧ J ∧ J

Kij =

∫

M
ωi ∧ ωj ∧ J

Kijk =

∫

M
ωi ∧ ωj ∧ ωk.

(B.3)

The volume of the Calabi-Yau is then given by

V =
1

3!
K. (B.4)

The metric that is naturally induced on the space of two forms is given by

Gij =
1

4V

∫

M
ωi ∧ ∗ωj (B.5)

and it can be shown using the complex coordinates si introduced above that this metric is

a Kähler metric. It is straightforward to derive

∗ωi = −J ∧ ωi +
3

2

Ki

K J ∧ J. (B.6)

This may be used to express the metric as

Gij =
1

4V

[
−Kij +

3

2

KiKj

K

]
. (B.7)
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The inverse metric is given by

Gij = −4V
[
(K−1)ij − 1

2V vivj

]
. (B.8)

Where (K−1)ij is the inverse of the symmetric matrix Kij . From (B.2) and (B.5), the bases

of H1,1(M) and H2,2(M) are related by

∗ωi = 4VGij ω̃
j. (B.9)

A useful formula involving the Kähler moduli that was first derived by Strominger in [21]

is

Jmn(ωi)mn = 8vi (B.10)

which is sometimes also expressed as

Ki

V = 8vi. (B.11)

B.2 Complex structure deformations

The complex structure deformations of M are in one-to-one correspondence with the ele-

ments of H2,1(M, Z). A Calabi-Yau three-fold is defined by a holomorphic closed three-

form Ω (or its complex conjugate Ω̄) which spans H3,0(M, Z) (H0,3(M, Z)) which is nec-

essarily one dimensional. Ω is only defined up to a holomorphic function of the moduli

za with a = 0, 1, . . . , h2,1(M, Z) which have been taken to be projective coordinates. In

fact on the moduli space Ω is not a scalar but a section of a GL(1, C) line-bundle which is

Hodge (i.e., its Kähler form is equal to the first Chern class.)

On the space of three-forms one can introduce a hermitian inner-product

〈α|β〉 = i

∫

M
α ∧ β (B.12)

for α, β ∈ H3(M) which enables one to introduce the following real basis for H3(M, Z)

consisting of αa, a = 0, . . . h2,1(M) and βa, a = 0, . . . h2,1(M) which satisfy
∫

M
αa ∧ βb = δb

a (B.13)

and
∫

M
αa ∧ αb =

∫

M
βa ∧ βb = 0. (B.14)

These relations are Sp(2h2,1 + 2)-invariant and hence the moduli space is in fact an

Sp(2h2,1 + 2) ⊗ GL(1, Z) bundle. In fact it can be shown that all quantities of interest

on this manifold can be derived from a certain holomorphic function G(z) called the pre-

potential. Such manifolds are known to be Special Kähler Manifolds. On such manifolds

there is a choice of coordinates called special coordinates in which Ω take the following

form

Ω = zaαa − Ga(z)βa (B.15)

– 27 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
9

where Ga(z) = ∂G
∂za . A basis for H2,1 is then given by Kodaira’s formula,

χa = DaΩ, (B.16)

where we have introduced a GL(1, C)-covariant derivative by

Da =
∂

∂za
− ka

ka =

∫
M

∂Ω
∂za ∧ Ω̄∫

M Ω ∧ Ω̄
.

(B.17)

The gauge potentials ka can be shown to be derived from the Kähler potential K via

ka = − ∂K

∂za
(B.18)

with

e−K = i

∫

M
Ω ∧ Ω̄. (B.19)

One can thus identify the GL(1, C) transformations as Kähler transformations. K defines

a natural Kähler metric on the moduli space which is given below. Note that, only h2,1

of the set, {Φa, a = 0, . . . , h2,1} defined above, are linearly independent. The following

constraint expresses this fact,

zaχa = 0. (B.20)

The Yukawa couplings in the complex structure sector is defined by

καβγ = −
∫

M
Ω ∧ χµ

α ∧ χν
β ∧ χρ

γ Ωµνρ (B.21)

where

χµ
α =

1

2‖Ω‖2
Ω

µρσ
χα ρσν̄ dξν̄ . (B.22)

The natural metric (the Weil-Petersson-De Witt metric) on the complex structure moduli

space is defined by [19, 20]:

Gαβ̄ = −
∫
M χα ∧ χ̄β̄∫
M Ω ∧ Ω

. (B.23)

In the gauge-choice that we are working in this becomes

∫

M
χα ∧ χ̄β̄ = 8iVGαβ̄ (B.24)

B.2.1 The large complex structure limit

In section 6 we extracted, from the the expressions of dΩ and dJ on M̃ [9], explicit ex-

pressions for the three non-vanishing torsion classes. To do so we have relied heavily on

the assumption that M̃ is the ‘deformation’ of some underlying Calabi-Yau manifold M in

the large complex structure. Mirror symmetry for Calabi-Yau manifolds tells us that the

prepotential for the complex modulus space of M in this limit is, in some suitable basis,
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the same as the bare prepotential of the Kähler modulus space of W in the large volume

limit. We can thus set, in the large complex structure limit, the prepotential for M to

G = − 1

3!

καβγzαzβzγ

z0
+

1

2
Sαβzαzβ + z0Aαzα. (B.25)

Since the coordinates za are projective we can set z0 = 1 (this is the gauge choice of [9])

with the understanding that we do so after taking derivatives. The period matrix (see [19]

for more details) is given by

Gab =

[
∂2G

∂za∂zb

]
. (B.26)

For our purposes we shall only need the imaginary part of this matrix, which in the large

complex structure is given by,

G
− =

[
xT κx − 2V −(κx)α
−(κx)α καβ

]
, (B.27)

where we have introduced real and imaginary parts for the unfixed moduli zα by

zα = xα + iyα, (B.28)

as well as the symmetric h2,1 × h2,1 matrix

καβ = καβγyγ (B.29)

and identified

V =
1

3!
καβγyαyβyγ . (B.30)

For the last expression we have used the following fact, valid for any SU(3) six-manifold,

Ω ∧ Ω̄ = −4i

3
J ∧ J ∧ J (B.31)

integrated over M in the large complex structure limit. The inverse of G
− is then easily

found to be

[G−]−1 = − 1

2V

[
1 xα

xα (xT κx − 2V)κ−1
αβ

]
. (B.32)

In general one can then express the βa as

βa =
i

2

(
[G−]−1

)ab (
kbΩ − k̄bΩ̄ + χb − χ̄b̄

)
. (B.33)

It can also be shown that

kα = −i
(κy)α
4V . (B.34)

In the large complex structure limit we then have, with z0 = 1,

β0 = − 1

4VΩ− − 1

4V yα (χα + χ̄ᾱ) . (B.35)

This expression lets us read off the values of W+
1 and W3 in the main text.

We have also used in our computations the following real form of the metric (B.24) on

the complex structure moduli space:

Gαβ̄ = −1

4

καβ

V +
(κy)α(κy)β

V2
(B.36)
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C. Derivations of important identities

In this appendix we derive the formulae which play a crucial role in the calculations of

section 6 of this paper. All of the following expressions are valid in the large complex

structure and large volume limit of M̃ and are given in the specific gauge z0 = 1.

C.1 Variation of the integral of Ricci scalar

Here, we derive the expression (6.16). From the variation of (6.15) we have

δ

∫

fM
d6y

√
gR = δ

[
e2

8V

]
. (C.1)

First, consider the left hand side of this equation:

δ

∫

fM
d6y

√
gR =

∫

fM
d6y [(δ

√
g)R +

√
gδR]

=

∫

fM
d6y

√
g

[
1

2
gmnδgmnR + δgmnRmn

] (C.2)

where we have discarded a term involving δRmn since it is a total derivative on M̃. Using

Strominger’s formula (B.11) it is easy to show that

gmnδgmn = 8(v · δv). (C.3)

On the other hand the right hand side of (C.1) gives

1

8V δe2 − e2

2V (v · δv) (C.4)

where we have used

δ
1

V = − 4

V (v · δv) (C.5)

which, in turn, can easily be derived from the definition (B.4) of V and (B.11). Putting all

of this together in (C.1) and using (6.15) we obtain equation (6.16):

∫

fM
d6yδgmnRmn =

1

8V δe2 − e2

V (v · δv). (C.6)

C.2 Useful identities

In this subsection we derive several identities which are useful for the derivations presented

in section 6.

From eq. (6.17) we have
δgµν

δz̄ᾱ
=

1

8
(Ω · χ̄ᾱ)µν (C.7)

This implies that the right hand side is symmetric in µ and ν. We then consider

(Ω · χα)µρ(Ω · χ̄β̄)ρν = (Ω · χα)µρ(Ω · χ̄β̄)νρ. (C.8)
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We now use the identities (4.9) on both sides of this equation to eliminate the Ω’s as well

as the fact that χ and χ̄ are primitive. Thus we get

2(χα)µδτ (χ̄β̄)ν
δτ = δµ

ν (χα)ρθδ(χ̄β̄)ρ
θδ − (χα)ρνδ(χ̄β̄)ρ

µδ. (C.9)

Similarly by considering (Ω · χα)µρ(Ω · χ̄β̄)νρ = (Ω · χα)ρµ(Ω · χ̄β̄)νρ it is easy to show that

2(χ̄β̄)µ̄ρ
χ(χα)ν

ρ
χ = gµ̄ν(χα)ρψχ(χ̄β̄)ρ

ψχ − (χα)µ̄ψχ(χ̄β̄)ν
ψχ. (C.10)

These identities, in conjunction with (B.10) or (B.11), help us to disentangle integrals of

terms which involve contractions of forms from complex structure and Kähler structure

moduli spaces.

Next we present another identity used in deriving eqs. (6.24) and (6.26). We consider

the variation of e2 = eiejG
ij , where Gij is the inverse metric on the CY Kähler moduli

space given by (B.8):

δe2 = −eiejδGij

=
3

2

eiejKijkδv
k

K − 9

2
(eiejKij)

(Kiδv
i)

K2
− 9

2

(eiKi)(e
jδKj)

K2
+

27

2

(Kie
i)2

K3
(Kiδv

i).
(C.11)

We now use (B.11) and the following form of (B.7)

eiδvjKij = −4V(e · δv) + 16V(e · v)(v · δv) (C.12)

to get

δe2 =
1

4

eiejKijkδv
k

V − 16(e · v)2(v · δv) + 4e2(v · δv) + 8(e · v)(e · δv). (C.13)

This is used in section 6 to eliminate the Kijke
iejδvk term in (6.19).

C.3 Integrals

In this subsection we outline the necessary steps required to evaluate the terms X and Y

defined by (6.18) and (6.20), respectively.

C.3.1 The integral in X

First we evaluate the integral in eq. (6.18):

1

16

(e · v)2

V2

∫

fM
d6ξδvi

[
1

2
(ωi)

µν̄ χ̄µσ̄τ̄χν̄
σ̄τ̄ − (ωi)

µν̄χµστ̄ χ̄ν̄
στ̄

]

=
1

16

(e · v)2

V2

∫

fM
d6ξδvi

[
(ωi)

µν̄ χ̄µσ̄τ̄χν̄
σ̄τ̄ − (ωi)

µ
µχνστ̄ χ̄νστ̄

]
. (C.14)

Where we have used (C.10) to go from the first line to the second. The (ωi)µµ factor in the

second term can be brought out of the integral using (B.10) and the rest of this term can

be integrated to give a factor of the volume (in our gauge) using (B.24), (B.30) and (B.36).
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To evaluate the first term above we note that since all six forms are proportional we

can write
i

8

∫
(ωi)

µν̄χν̄ψχχ̄µ
ψχd6ξ =

∫
f(y) ωi ∧ J ∧ J (C.15)

where f(y) is in principle a non-trivial function on M̃, which turns out to be a constant.

Contracting with vi and using Jµν̄ = vi(ωi)µν̄ we find

∫
(ωi)

µν̄χν̄ψχχ̄µ
ψχd6ξ = −2Ki. (C.16)

Putting all of this together we have for the two terms:

1

16

(e · v)2

V2

∫

fM
d6ξδvi

[
1

2
(ωi)

µν̄ χ̄µσ̄τ̄χν̄
σ̄τ̄ − (ωi)

µν̄χµστ̄ χ̄ν̄
στ̄

]
=

1

2

(e · v)2

V (v · δv). (C.17)

C.3.2 The integral Y

Next we outline the steps involved in evaluating the integral (6.20). It is enough just

to consider the integral of δgµνRµν since the other term follows by complex conjugation.

Using (6.13) and (6.17) we have

∫

fM
δgµνRµν

√
gd6y =

e2

32V2
δzαyβ̄

∫

fM
χα ∧ χ̄β̄ (C.18)

− i

256

(e · v)2

V2
δzαyβyγ

∫

fM

√
gd6ξ(Ω̄ · χα)µν(χβ)µ

ψσ̄(χγ)νψσ̄

−i
e · v
1024

δzα

∫

fM
d6ξ

√
g(Ω̄ · χα)µν ×

×
{

1

2
(e · ω)µ

ρ(χ̄ · Ω)νρ + (e · ω)θ
ρχ̄µ

ψθΩνψρ

}

The first term on the right hand side above is evaluated using (B.24) and (B.36). The

second term is an integral that involves a cube of χ and can be shown to be given essentially

by the Yukawa couplings on the complex structure moduli space. This term can then be

transformed by using

8VGαβ̄yβ = καβγyβyγ , (C.19)

which follows easily from (B.36). To evaluate the third and the fourth terms we use the

identity (C.9) and find that in both terms only (ωi)µ
µ appears which, using Strominger’s

formula, can be factored out. The integrals in the third and the fourth terms then become

essentially the same as the first term. This way we find

∫

fM
δgµνRµν

√
gd6y =

ie2

4V δzαGαβ̄yβ (C.20)

eq. (6.20) follows from this.

– 32 –



J
H
E
P
0
5
(
2
0
0
7
)
0
0
9

References

[1] C. Vafa, Superstrings and topological strings at large-N , J. Math. Phys. 42 (2001) 2798

[hep-th/0008142].

[2] M. Graña, Flux compactifications in string theory: a comprehensive review, Phys. Rept. 423

(2006) 91 [hep-th/0509003].

[3] M.R. Douglas and S. Kachru, Flux compactification, hep-th/0610102.

[4] A. Neitzke and C. Vafa, Topological strings and their physical applications, hep-th/0410178.

[5] M. Vonk, A mini-course on topological strings, hep-th/0504147.

[6] R. Dijkgraaf, S. Gukov, A. Neitzke and C. Vafa, Topological M-theory as unification of form

theories of gravity, Adv. Theor. Math. Phys. 9 (2005) 603 [hep-th/0411073].

[7] M. Falcitelli, A. Farinola and S. Salamon, Almost-hermitian geometry, Differ. Geom. Appl. 4

(1994) 259.

[8] S. Chiossi and S. Salamon, The intrinsic torsion of SU(3) and G2 structures,

math.DG/0202282.

[9] S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau

compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102].

[10] S. Gurrieri, Compactifications on half-flat manifolds, Fortschr. Phys. 53 (2005) 278.

[11] N. Hitchin, Stable forms and special metrics, in Global Differential Geometry: The

Mathematical Legacy of Alfred Gray, volume 288 of Contemp. Math., pag. 70. American

Math. Soc. (2001).

[12] C. Bär, P. Gauduchon and A. Moroianu, Generalized cylinders in semi-riemannian and spin

geometry, Math. Zeitschr. 249 (2005) 545.

[13] K. Yano, Differential geometry on complex and almost complex spaces, Macmillan, New York

(1965).

[14] D. Joyce, Compact manifolds with special holonomy, Oxford University Press, Oxford (2000).

[15] B.S. Acharya and M. O’Loughlin, Self-duality in D <= 8-dimensional euclidean gravity,

Phys. Rev. D 55 (1997) 4521 [hep-th/9612182].
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